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Absbsct. A generalization of the algebraic generator coordinate method to the case of 
%tally compict Lie groups is obtained. This generalization allows the spaces of collective 
states generated by the non-compact Lie groups to be constructed. A scheme for the 
derivation of the coherent states in the collective spaces is shown. 

1. Introduction 

The algebraic generalization of the generator coordinate method (AGCM) has been 
proposed in [l]. The L2(G) convolution algebra with involution, where G was a 
compact group of motions, played the main role in this approach. The compactness of 
the group of motion G was the crucial point for some proofs in the method described 
in [l]. In the present paper we extend this approach to the case of locally compact 
groups which are in many applications more interesting than compact ones. The 
extension is not straightforward because of the different structure of the algebra L'( G )  
that has to be taken into account, compared to the more familiar algebra L2( G). 
However, most of the useful relations known from the compact case can also he proved 
for non-compact groups. This is shown in section 2 of the paper. Section 3 contains 
a group theoretical application of the AGCM approach in construction of the coherent 
states for a class of representations of compact and non-compact groups. For con- 
venience we will now sketch the main ideas of the standard OCM formalism. 

The GCM, originally described by Hill, Wheeler and Griffin [2] and in its up to 
date version presented in [3] (for a review of the literature see [4]), is a quantum 
mechanical tool that enables us to construct the spaces of states having some required 
properties. The main object in this method is a family of states labelled by a set of 
parameters called the generator coordinates. The family of states is named the generator 
function. In the traditional variational approach to the GCM the generator function 
14) = 19,, q 2 , .  . , , qm) defines a very general ansatz for a trial function in the following 
form: 

, 

The integral is an m-dimensional integral over the space of q-parameters. The function 
f ( q )  is a wavelike amplitude and can he determined from the variational principle 

8 ( Y I ~ l W ( W )  = o  (2) 
where H is the Hamiltonian of the physical system. Equation (2) leads to an integral 
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equation for the weight function f ( q ) .  The lowest eigenvalue of this so-called Griffin- 
Hill-Wheeler integral equation [2] should give an approximate ground state energy 
of the system while higher eigenvalues coincide with the excited states. The set of 
states 9 generated by (1) forms a subspace Xv  of the complete Hilbert space Z of 
the wavefunctions of the original physical system. Solving the integral equation for 
f ( q )  is tantamount to diagonalizing the complete Hamiltonian of the system in the 
subspace Xw of X The Griffin-Hill-Wheeler method gives exact solutions if exact 
states @ belong to the subspace Zv. In other cases the results obtained by the GCM 
are approximate eigenfunctions and eigenvalues. The accuracy of the method depends 
on the extent to which the eigenstates of H can be approximated by states in Zv. 
This in turn depends on the choice of the generator function 14). 

The states (1) are pure states in a quantum mechanical sense and it is a very 
interesting problem to extend the method in such a way to generate the collective 

the mixed states was proposed in [ 13 and illustrated by a construction of a collective 
space generated from a density matrix of the system under consideration. The generator 
coordinates (the collective variables) were established there by means of the appropriate 
group of motions; a compact Lie group. 

However, the compact groups are often inadequate to describe various motions 

the compact groups do not reveal continuous spectra for unbounded states. Thus, it 
will not be amiss to pay more attention to the locally compact groups. 
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FhiCh zrc respansib!. far mzny kinds af .xdtztians in mlny-pl!?ir!c systems. .A!%?, 

2. AGCM 

Let G be a locally compact Lie group and for simplicity unimodular. In this case one 
cannot use the involutive convolution algebra L2(G) as in the case of compact groups 
[l] because now the convolution of two functions belonging to L2( G )  is not necessarily 
a 'square integrable' function. Instead, we have to introduce the Banach algebra L'(G) 
of complex functions on the group G with involution # given by the relation [SI 

where a indicates the usual complex conjugation. The multiplication law in the L'(G) 
algebra is, as usual, established by means of the convolution in the following form: 

U q g )  = u*(g- ' )  (3) 

(U u)(g) = dg' u(g ' )u(g ' - 'g )  (4) 
0 

where dg denotes the Haar measure on G. 

three conditions: 
On the group G we define the complex function ( p ;  . )  which fulfils the following 

(9 (P i  g-') = ( P i  E?)*. ( 5 0 )  

(ii) For any finite sequence a , ,  . . . , a. of complex numbers and any arbitrary 
sequence g,, g,, . . . , g. of points on the group manifold. n = 2 , 3 , .  . . , the following 
relation is fulfilled: 

a W p ;  g;lg,)ao. (56) 
(iii) The function defined by the integral 
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Using the invariance of the Haar measure one can see by direct calculations that 
for arbitrary ( p ;  .)E L1(G) the condition (iii) is always fulfilled. 

We use the function (p ;  .) to define the positive linear functional on the algebra 
L'(G). We denote the functional by the same symbol ( p ;  .) because it is easy to 
distinguish between the function and the functional specifying its argument. The 
functional ( p ;  .) is defined as follows: 

( 6 )  

To have a continuous functional one needs to assume the additional condition for the 
function (S), namely the function ( p ;  .) has to belong to the space of essentially bounded 
functions usually denoted by L"(G) [6] .  

It will now be worthwhile to list some properties of (6 )  which will be useful in 
further applications. It turns out that: 

(i) The only functionals given by (6) are linear and continuous in L'(G). The 
functional (6) has the norm equal to II(p; g)l/_. These statements relate to theorem 
IV.3.5 in [7]. 

(ii) Straightforward calculations reveal another feature of (6 ) ,  namely 
, 

( P ;  u*)=J dgu*(g)(p; g)=J dgu*(g)(p; g - ' ) = ( p ;  U)*. 
c G 

This relation can be derived by means of (3), (Sa) ,  and of the invariance property of 
the Haar measure on G. 

(iii) On the basis of (56) ( p ;  U* 0 U )  is greater or equal to zero for all U from L'(G) .  
The next step in our procedure is to define the overlap operator, known also in 

the OCM, as follows: . 
(.Vu)(,) = J d g ' h  g-'g')u(g') .  (7) 

For the integral kernel (p; .) belonging to L'(G) the operator K is a well defined 
continuous operator in the algebra L'(G) because the integral in ( 7 )  can be rewritten 
in the form of the convoiution of two functions giving a function from i '<G) ,  i.e. 

0 

W K g )  = IC dg' u(g')(p; g ' - 'd *  

Using definition ( 7 )  one can write the functional of the convolution of two functions 
in the form of a single integral of a local function: 

(8) # (p ;  a . P i =  IC d g n * ( g ) W " ) .  

Because the functional (6 )  is positively defined, i.e. ( p ;  U* 0 u )>O.  The overlap operator 
has an analogous property, i.e. 

dgaygj (Jva j (g)>G for ai; il E i.ljG). (9) c 
JG 

Following the idea of the AOCM described in [ 11 one can construct the space of 
states by means of the GNS construction [B]. By this procedure one can obtain the 
space of states determined by the group of motion 0 and the functional ( p ;  .). The 
functional (6) allows the introduction of the scalar product in the obtained linear 
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space, which can be turned into the Hilbert space after the standard completion. As 
a result one obtains the Hilbert space of states in which the action of the algebra L'( G) 
and the group G itself is defined in a very natural way. Below, we also show the 
connection between this construction and the standard GCM which explains the physical 
meaning of the construction in a more intuitive way. 

By the idea of the GNS construction, (8) could be used as a scalar product in the 
space L'(G),  but a non-zero element from L'(G) may have a zero norm determined 
Y J  L I ~ D  D-CLICLI ~ Y Y U C L .  A I U D  y r u v ~ ~ n  IJ srrargrn~u~waruly lrlaleu IO me zero elgenvaiues 
problem of the overlap operator in the FCM approach [4, section 10.2.21. 

To put these pathological behaviours aside one can define the left-ideal in the 
algebra L1(G) that comprises all the pathological elements: 

A G6idi and M Rogatko 

l..,,l.:-",."," _--^ A..^* ~ : ~ - - - ~ , ~ - : " - ~ - - : - ~ . =  A1 1. . .4_~ I L - - - ~ ~ -  ~: 

W, ={U E L'( G) ;  (p ;  a' 0 U) = 0 for all a E L1(G)} .  (10) 

These null elements can be interpreted as the states indistinguishable by the group of 
motion G of the physical system under consideration. Obviously, during the evolution 
of the system the functional (6 ) ,  in general, can also evolve and the left-ideal (10) can 
change with time, giving another set of indistinguishable states, i.e. the space of states 
can vary with time or other external parameters like strength of fields, temperature, 
static deformations, etc. 

A possible practical method to find all the elements belonging to 52, is by use of 
the overlap operator N, (7). Using the standard proof one can show the generalized 
Schwartz-Cauchy inequality within the algebra L1( G): 

(11) I(p; U #  0 u)1% ( p ;  U* 0 U)(& U# 0 U). 

Applying this inequality to the definition of 9, one can see that U E W p  if and only if 
( p ;  U #  0 U) = 0. At this point it is worthwhile noting that one can obtain a very simple 
relation directly from the definition of the overlap operator (7): 

( P ;  U)= (NuNu)(e) (12) 

e:??.! to 0 when it belnngs to !ha !Pft-ide.! a,!,.; "). -!%is s!l!cmc!!! has !e be prnvad 
where e denotes a unit element in G. A consequence of this relation is that for U is 

in this indirect way because the algebra L'(G) does not contain unity. 
For a fixed @, (9) determines a continuous functional on L'(G) and this implies 

that the left-ideal (10) can be identified with the kernel of the overlap operator, i.e. 
Wp = Ker(N), and one needs to solve the following equation: 

Nu = 0. (13) 

Having found the left-ideal (10) one can construct a pre-Hilbert space X, which 
emerges as a quotient of the algebra L1(G) and the left-ideal WO, i.e. X= L'(G)/Bo.  
After the standard completion procedure of X one obtains the Hilbert space of states 
denoted by the same symbol X, generated by the functional ( p ;  .) and the group of 
motion G. The scalar product in X is given by the relation 

( u l u ) x = ( p ;  uf.u). (14) 

We remark that on the left-hand side of (14) one needs to write classes of equivalent 
elements which are elements of the space X, but, following the usual convention for 
convenience, one can use their representatives instead. 
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Expression (14) can be rewritten as the double integral over the group manifold: 

( 1 9  

The obtained scalar product couples the states by the non-local function which is a 
generalization of a standard overlap function from the GCM approach. This overlap 
contains some correlations between different values of the generator coordinates 

the standard GCM. 

For this purpose let us consider the case of the function ( p ;  .) defined by means 
of the scalar product in a Hilbert space X, e.g. the many-body space of states of the 
physical system, as follows: 

( p ;  g)=(--IT(g)l-) (16) 
where T ( g )  denotes a unitary representation of group G in Hilbert space and I-) is 
an arbitrary (but in applications having a physical meaning) state vector in X. As a 
first step we prove the following lemma. 
Lemma 1. U E ~ ? ~  iff IllGdgu(g)T(g)l-)ll,=O, i.e. the vector lu)- 
I, dgu(g)T(g)l-)=O in the many-body Hilbert space X in which the generator 
function I-) is determined. 
RooJ Suppose u ~ Y e , ,  then Nu=O. The last condition can be rewritten in the form 
(-1 T+(g)lu)  = 0 for all g E G. Multiplying both sides of the equations by u * ( g )  and 
integrating over g one obtains that the scalar product (ulu) = 0. Conversely, from the 
fact that lu)=Ofor every vector I U ) E  X(u(ulu)=O, i.e. also the functional ( p ;  U'. u ) = O  

U 
From lemma 1 one can directly see that the null space Xo of the GCM approach 

~ o = { ~ G d g u ( g ) T ( g ) l - ) :  u ~ % ]  (17) 

and the ratio X/Xo after completion gives the GCM space XOcM. Another direct 
consequence oflemma 1 is that there exists a one-to-one unitary transformation between 
the spaces YL' and XGcM, defined as 

( u ~ ) s Y =  jG dg' dgu*(g')(p; g'-'g)u(g). 

m r r a m n t r A  ham hw n -,.A I, A +  eh:" -&-+ :A ._.:I# L- -n--:--c._~ I- I : _ # _  r L -  .--__ I- 
"pL'"u..L*.. ..*.* -, 6 '..... 8 . n, L l U D  p " 1 L L L  11 w,,, uc ,,,G.aL,,L,g,u, L U  ,,,, t. L U G  AUCM ,U 

for all U E L'(G) and U E Bp. 

consists of vectors of the form 

where cl(. ) denotes vectors in the spaces YL' or XGCM which comprise some classes of 
the corresponding equivalent elements from L'(G) and 8. The unitarity of T follows 
directiy from the forms of the scaiar products in X and 2. 

In many cases it is important to know how the group G acts on the space X. 
Following [l] we define the action of G by the left shift operator as follows: 

-Wg')u(g)  = u(g' - 'g)  where U E X. (19) 
The operators 2 ( g )  furnish a unitary representation of the group G in the space X. 
On the other hand. calculating the ?-transformation of the vector .Y(g) cl,(u) one 
obtains the vector T(g)T(Cl,(u)) belonging to the GCM space XocM, i.e. 

Equation (20) means that the operator T is the intertwining operator for the representa- 
tions 2(g) and T ( g ) .  

72k) = %)T. (20) 
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In this way we have shown that the formalism presented here is the extension of 
the AOCM approach to locally compact groups. It can also he applied to the compact 
case, sometimes enlarging in this way the set of available vectors, in comparison with 
the L2(G)  algebra, in the resultant construction of the state space. The choice of the 
algebra Lp( G), p = 1 or 2, for the compact case is dependent on our demands concerning 
the possible analytical behaviour of state vectors of a physical system. 

For simplicity, we have only considered here unimodular locally compact groups. 
However, the extension to non-unimodular locally compact groups is straightforward 
and leads to modifications of the formulae by insertion of the modular functions and 
the appropriate Radon-Nikodym derivatives. 

3. Coherent states in the space X 

Since their introduction, a variety of coherent states based on different groups has 
been constructed and widely applied in physics [9]. A general prescription for the 
construction of coherent states exists only for semisimple Lie groups [ 101. However, 
many Lie groups which are of great interest in physics, e.g. the PoincarC group or 
Euclidean group, do not belong to this ‘well behaved‘ category. The main difficulty in 

for example the Euclidean groups in two or more dimensions, the faithful, unitary, 
irreducible and square integrable representation does not exist. This feature does not 
allow the fundamental resolution of unity that characterizes coherent states. 

Our aim in this section is to  show under which conditions the unitary representation 
P acting in the canier space X defined by (19) is square integrable and allows resolution 
of unity. We follow an excellent idea of Isham and Klauder presented in [ 113. The 
solution suggested by these authors is to use the unitary, faithful, but not necessarily 
irreducible, representations. In our case the representation P is unitary; however, as 
will be shown below, irreducibility and other properties of the representation P are 
dependent on the form of the functional (p; .). 

First we show under which conditions the unitary representation P is faithful, i.e. 
the equality 2 ( g l )  = P(g2)  implies the equality g, = g,. Let us define the subset of 
group elements 

(21) 

co!ls?mr!i!lg 1 Sys!Pm nf rohercn! stztcs fer thcsc gr..l?ps is the f2C! !!!Et, cnnsidcring 

F,, = (9: (p; g) = (p; (g;’g’g,)g) for all g,, g belonging to G )  
which will be helpful in further considerations. Let us suppose now that the representa- 
tion 3 is not faithful, i.e. there exists a pair of group elements g, # g, that for eve* 
vector U E X  2 ( g l ) u  = P(g,)u. This condition can be rewritten in the following form: 

Pe(g0)u = U where go= g;’g,. (22) 

The vector U can also be represented by an element of the algebra L’( G), which we 
denote by the same symbol U. Within the algebra, (22) is equivalent to the statement 
that { 3 ( g o ) u  -U} belongs to the left-ideal (null vector of the space X) B,, and instead 
of (22) one can write the following condition: 

( p ;  u”.=(P(go)u-u))=O for all U, U E L’( G). (23) 

In a more explicit form, (23) can be expressed as IG dg, I, dg, u*(g,)(p; g;lgJ(u(g&) - U(&)) = 0 (24) 
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for every U and U belonging to L'( G).  Because the function U is arbitrary, the following 
equation is fulfilled for every g,: 

IC dg2(p; g;'g2)(u(gOlg2)-  ~ ( g , ) )  =O. (25) 

Use of the invariance of the Haar measure over G allows (25) to be rewritten as 

J dgd(p; g;'g&-(p; g?gJ)u(g , )=o  (26) 
0 

for every U E L'( G )  and g, E G. Equation (26) implies the equality 

( P ;  g )  = ( P ;  g;'goPlP) (27) 
for all g and g, belonging to G. More precisely, all the above equations are fulfilled 
almost everywhere, i.e. everywhere except, eventually, a set of the measure zero. These 
considerations lead to the following statement: if the set-(21) F, =[e}, where e denotes 
unity in the group G, then the representation 2 is faithful. 

Assume now that the representation 2 of G in 5Y is unitary and faithful. The 
representation 2 is called 'square integrable' if 

lcdgl(ulz(g)u)x12<m (28) 

for every U E L'(G) .  One can consider the following sequence of inequalities: 

0 6  IC d d ( u l ~ ( g ) ~ ) ~ 1 2  = d g ( u l ~ e ( g ) ~ ) ~ ( u I ~ ( ~ ) ~ ) ~  

where llxllp denotes the nom in Lp( G) space. The last expression is finite ifthe function 
(p; .) belongs simultaneously to both the spaces L'(G) and Lm(G), and in this case 
the representation 2 is square integrable. 

Now, if the representation 2 in the space X i s  unitary, faithful and square integrable 
then following [ l l ]  one can define the mapping 

x :  X 3 Y  -Yrlrn(g)=(2'(g)q[Y)suE L x ( G ) c  LYG) (30) 

where q is a fiducial vector [ll].  If the mapping x is one-to-one then one can write 
the fundamental resolution of unity as follows: 
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where e is a constant dependent on the normalization of the fiducial vector 7. Equation 
(31) can he expressed in the operator form characteristic for coherent states as 

A G6idi and M Rogatko 

For the special case of the irreducible representation 3 the mapping ,y is always an 
injection. This statement is a consequence of the very well known generalized Schur's 
lemma; see for example [12]. 

4. Conclusions 

In this paper a natural extension of the AGCM on to locally compact groups of motion 

L1(G), which is well defined for both types of Lie groups, i.e. for compact and locally 
compact groups, is applied. The generalization of the overlap operator which allows 
for searching of the null space generated by the metastate is obtained. A straightforward 
link to the standard GCM, similarly to the compact case, is also shown. As an application 
a general construction of the coherent states, widely exploited in physics, for group 

Taking into account the results obtained in [l] and this generalization one can 
conclude that this method has the advantages of the standard GCM and the power of 
group theoretical approaches. 

has heet! praposed. !E this genera!izztieE instead nfthe '-o!gebra P ( G )  the $-a!gebro 

.ep.Pen!a!iofis ohtaified as a ress!t of the AGCM is d_efived: 
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